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The first of three Teach Talk columns to focus on the implications of research into learning for

actual classroom practice.

It's a common refrain that came up again recently during a conversation among several faculty
members after a seminar on new educational technologies. The discussion had winded its way
around to the intellectual strengths and weaknesses of the students, and the question popped up,
as it often does around this subject: Why can't students be better problem solvers? Professor
Heidi Nepf from Civil and Environmental Engineering summed up the faculty's sense of frustration
particularly well. "I can give my students a set of problems that all follow a certain model, and
they'll do fine," she said. "The minute I throw in a novel conditicn or create a problem that doesn't
look like something they've seen before, they're lost." Then she turned to me and asked, "How

come?"

I don't think anyone would argue that the problem is a complex one. It is connected to such
factors as the kind of high school education our students received, their own proclivities, and their
stage of intellectual maturity. But I'd like to suggest that at least part of the answer lies in the fact
that too often we don't explicitly teach students the process of problem solving. We expect that as
they listen to us in lecture or watch us in recitation they will somehow absorb the skills they need
to make the jump from using "plug 'n' chug” to employing more sophisticated problem solving
strategies. But as Donald Woods, professor emeritus of chemical engineering at McMaster
University and a leading developer of problem-based learning curricula, writes, "In a four-year
engineering program, students observed professors working more than 1,000 sample problems on
the board, solved more than 3,000 assignments for homework, worked problems on the board
themselves, and observed faculty demonstrate the process of creating an acceptable internal
representation about fifteen times. Yet despite all this activity, they showed negligible
improvement in problem-solving skills . . .." (Donald Woods, "How Might I Teach Problem
Solving,” in J. E. Stice, ed., Developing Critical Thinking and Problem-Solving Abilities. New
Directions for Teaching and Learning, no. 30, 1987, pp.58-59) Yet I don't think instructors should
be blamed: My guess is that if a representative sample of MIT faculty were asked to describe how
they go about solving problems, they wouldn't be able to. In that regard, they wouldn't be any
different from most experts who have so internalized their problem solving abilities that these

skills have become transparent to them.



Happily, thanks to the work of cognitive psychologists, educators, and researchers in artificial
intelligence, who have been studying problem solving for at least the last 30 years, we do know
something about how skilled problem solvers recognize, approach, and ultimately solve problems.
Much of this research has revolved around examining what distinguishes expert problem solvers
from novices. Educators have then gone a step further to develop methods that can be used both

inside and outside of the classroom to strengthen the novice's problem solving skills.

In this Teach Talk I'd like to focus on the expert/novice dichotomy, because I believe it contains
an especially rich lode of information regarding the skills our students need to develop. In fact,
this column is the first of three Teach Talks that will be devoted to describing recent research in
learning in higher education. (The next two columns will deal with the theories of constructivism
and situated learning.) Each column is designed to inform readers on how this research can be
applied to improving actual classroom practice, for this knowledge has direct implications for

structuring the MIT educational experience.

The Componenis of Problem Solving

The most useful definition I have found for problem solving begins by conceptualizing a continuum
that runs from "learning" to "problem solving" to "creativity."” In this schema, learning refers to
the students' ability to demonstrate they have internalized the material to which they have been
exposed by displaying it in a context similar to that in which they were taught. "Transfer of
learning” is demonstrated when the situation is somewhat different from the original one. If,
however, the transfer situation is substantially different from the original, or if students meet
some barrier or difficulty in using the learning, then they are faced with problem solving. (This is
the situation to which Professor Nepf referred.) Creativity is at the far end of the continuum where
the situation is so vastly different that what has been learned is transferred to a totally new

context.

Several scholars, including Donald Woods, have sought to break down the process of problem
solving into its component parts. Woods' six-step plan, which he credits as an extension of the
plan devised by Gy6rgy Polya in his classic book How to Solve If, directs problem solvers to: read
about the situation; define the given situation or problem; define the "real” problem and create a
"representation” of it (more on this below); plan; do it; and check, look back, and implement.
Woads further decomposes each step into smaller parts. For example, "defining the situation”
(step two) is rooted in analysis, which consists of reasoning, classifying, identifying series and/or
relationships, creating analogies, and checking for consistency. While there may be disagreement
about the exact nature or order of the steps in the problem solving process, the underlying point
remains valid: Problem solving can be dissected into a set of skills that students can be exposed
to along with course content. One cannot substitute for another, (Interestingly, attempts to teach
problem solving as a separate course have not been as successful as when problem-solving skills
are interwoven into a "content" course. Giving students problems from the "real world" and using

those problems as the basis for teaching problem solving is particularly effective. In fact, Woods



maintains that the types of problems students are typically given in science and engineering

classes are not appropriate at all for teaching problem-solving skills.)

Finally, while we are likely to think of problem solving as a cognitive capability, a number of
researchers have also looked at the role of attitudes, values, beliefs, and emotions in successful
problem solving. (Actually, the research of neurologist Antonio Damasio suggests that emotion
and cognition should not be viewed as separate activities in the brain at all; rather, they work in
concert.) We know, for example, that if students believe they are incapable of solving a certain
kind of problem, they are likely to be unable to do it. De Bellis and Goldin have examined the
"influence of values, i.e., one's psychological sense of what is right or justified, on problem
solving," report Annie and John Selden in "What Does It Take to Be an Expert Problem Solver?"
The Seldens go on to write, "For example, some students may feel they 'should’ follow established
procedures, whereas others may value originality and self-assertiveness.” (MAA Online, 8/30/97,
p. 4) Other students who feel they should know the answer to a problem may become easily
frustrated, which can "lead them to guess or use plausible, but inappropriate, procedures," the
Seldens write. (MAA Online, 8/30/97, p. 4)

Good problem solvers are more often than not intrinsically motivated by curiosity, challenge, and
fantasy. (Joanne Gainen Kurfiss, "Critical Thinking: Theory, Research, Practice, and Possibilities,"
ASHE-ERIC Higher Education Report No. 2, 1988, p. 47) Good problem solvers are not daunted by
the unknown, but are challenged by it. They may experience frustration in their work, but it
doesn't defeat them: instead, it spurs them on. What else differentiates the experts from the

neovices?

What Do the Experts Da?

There are a number of characteristics that differentiate the expert from the novice problem solver.
But at the heart of the matter is that experts think about, consider, and examine the problem as 3
whole before beginning to work on a solution. They classify a problem according to its underlying
principles, deciding to what class of problem it belongs. They engage in a planning stage before

even attempting a solution. Novices jump right in.

In a classic 1978 study comparing individuals who were expert at solving problems in physics with
novices, Simon and Simon found that experts use a "working forward" method, looking at the
givens of the problem first and moving from the statement of the problem to a physical
representation of it. Only after they do this analysis, identifying likely ways to reach an answer, do
they employ equations. Then they call upon successive layers of equations, first using ones that
can be solved with the givens in the problem. They also add information that will help them solve
the problem from their own reservoir of learning. The experts' use of equations, in other words, is
guided "by the planning already done.” (D. P. Simon and H.A. Simon, "Individual Differences in
Solving Physics Problems," in R. S. Siegler, ed., Children's Thinking: What Develops? 1978, as

reported in Larkin, Heller, and Greeno, "Instructional Implications of Research on Problem



Solving," New Directions for Teaching and Learning, 2, 1980, pp. 55-57)

Novices, on the other hand, use a "working backward" strategy trying to determine what
procedure will get them to an answer. They tend to take more "piecemeal approaches" (Larkin,
Heller, and Greeno, p. 59), working by trial and error. They memorize, then try to apply equations
independent of context or any relationship to the inherent characteristics of the problem.
Especially problematic is that they try to translate the problem directly into a mathematical
representation, using a means-ends analysis. Or as one writer characterized it "[they] . . . select a
'first impression solution.'" "In effect," write Larkin, Heller, and Greeno, "experts understand

problem situations better than novices." (p. 59)

The good news is that when studies compared successful students with those having difficulty
solving problems, the former looked much like the effective problem solvers of the Simon and
Simon study. Successful students are able to apply specific pieces of knowledge to help answer
the problem. Unsuccessful students can't relate what they have learned to the question if the
guestion is asked in a form that is different from the one they have seen, (Greenfield, p. 15)
Successful students work more actively; unsuccessful students more passively. Successful
students are careful and systematic. Unsuccessful students ieap into a problem with at best a
haphazard plan, move without direction, and are unable to focus on any particular starting point.
Their knowledge base has no hierarchical organization to it, and they are easily distracted by
some difficulty or something irrelevant. On the other hand, like their professional counterparts,
successful students begin with a plan, modifying it as needed. They carefully develop and organize
their knowledge base, structuring it around fundamental principles and abstractions. (Greenfield,

p- 15)

If we accept the premise that good problem solvers are made and not born (allowing, of course,
for differences in innate capabilities), and that we have a responsibility to instruct in this area as
well as in content, the simple question is, how? In other words, what are the implications of this

research for what happens in our classrooms?

Teaching Problem Solving

I'd like to reiterate what I wrote earlier: The process of problem solving has to be taught explicitly
if we want to raise the general level of students' problem-solving abilities. Although many
students will eventually internalize the habits of good problem solving, this can occur earlier for
more students if the necessary skills are described, modeled, and practiced, and if the instructor
provides students with feedback on their behavior. As with many skills, learning happens when a
discussion of best practices are combined with opportunities for learners to try their hands at the

skill, and are told both what they are doing correctly and how to improve.

Greenfield suggests six things instructors can do to teach problem solving. They should:



model problem solving (making an occasional error or going down a blind alley is good!) so that

students see the process is not straightforward or linear;

demonstrate there is more than one way to solve a problem, so that students don't look for the

one right way;
redescribe the problem in qualitative terms and apply relevant underlying principles;
help students create a plan for the solution, estimating the range in which the answer might lie;

show how to break the problem down into manageable parts, identifying and clarifying key

concepts, drawing a diagram, translating the problem into a simpler form;

help identify and isolate factors that might lead to wrong solutions and develop strategies to

counteract these problems. (p. 19)

The author also suggests using the "think aloud”" process first developed by Jack Lochhead and
Arthur Wimbey in the early 1980s. In this instructional method, two students work together to
solve a series of short problems. One student becomes the problem solver, and he/she reports out
loud everything that is going on in his/her head as he/she attacks the problem. The other student
is the listener whose "primary objective," write Lochhead and Wimbey, "is to understand in detail
every step and every diversicn or error made by the problem solver.” The listener can also use a
checklist that the authors have developed to help him/her notice errors in the problem solver's
reasoning process. ("Teaching Analytical Reasoning through Thinking Aloud Pair Problem Solving,"
in Stice, p.75) After the first student solves his/her problem, the two students switch roles and
work on another problem. There are obviously a number of benefits to this method: students call
direct attention to the process they are using and reflect on it; the process is monitored and can
be called into question by another; and students practice working with others as they will be doing

in the professional world.

Some educators say that what is needed is a "cognitive apprenticeship" approach to instruction.
The elements of such a pedagogical method would consist of modeling, coaching, scaffolding (i.e.,
providing expert guidance a practice working with others as they will be doing in the professional
world. Some educators say that what is needed is a "cognitive apprenticeship” approach to
instruction. The elements of such a pedagogical method would consist of modeling, coaching,
scaffolding (i.e., providing expert guidance at the beginning of the process and then removing it),
articulating, reflecting, and exploring. (Kurfiss, p. 45) This is a very different model from the one
in which the instructor does the problem solving for the class, but doesn't reveal the "secrets" of
his/her success. If we want students to be better problem solvers, we have to be like magicians
who are willing to show our audience how we do our sleight of hand. If we want students to be

better problem solvers, we need to be better teachers of the process for solving those problems.
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HELPING STUDENTS MAKE THE TRANSITION FROM NOVICE TO
EXPERT PROBLEM-SOLVERS

Michael Prince’, Brian Hoyt*?

Abstract — Engineers, by definition, need to be good
problem solvers. This paper discusses a model for building
on a traditional engineering curriculum to systematically
develop students' problem solving skills. The curriculum
Structure consists of required courses that emphasize
problem solving at distinct levels. The courses are broken
down into introductory, intermediate and advanced problem
solving courses. The type of problems utilized in each
course differentiates the courses. The problems posed are
qualitatively different, not simply harder, thus requiring the
students to engage different skill sets for resolution. As a
result, the courses develop different problem solving
abilities.

The model for teaching problem solving has been
developed through Project Catalyst, which is an NSF funded
initiative to improve undergraduate engineering education.
This paper presents the details of the proposed model,
discusses educational modules that have been developed to
aid instructors introducing problem solving in their courses
and provides some initial assessment of the results to date.
Index Terms —Curriculum Design, Problem Based
Learning, Teaching Problem Solving.

INTRODUCTION

Engineers, by definition, need to be good problem solvers.
In fact, the Accreditation Board for Engineering and
Technology (ABET) now requires that all engineering
programs demonstrate that students have the ability to
"identify, formulate and solve engineering problems". Few
engineering faculty would disagree with the importance of
this criterion. However, the traditional undergraduate
engineering curriculum is not designed to systematically
develop relevant problem solving skills. Consider, for
example, that the bulk of the curriculum emphasizes facts,
formulas and low level textbook exercises. In fact, an
analysis of one four- year engineering program found that
approximately 80% of problems assigned to students
required only low-level thinking skills [8]. The authors
classified problems using Bloom's taxonomy, and concluded
that most problems did not require any analysis, synthesis or
evaluation. In addition, a traditional engineering program
reserves most of the higher level thinking, such as design,
until the senior year. And finally, a traditional program
relies on constant repetition of textbook problems to develop

problem solving skills but would typically not include any
formal training in problem solving methodologies.

What is the problem with this approach? Most of us
have gone through programs like this and may have taught
this way for years. However, there is reason to think that we
can do better. At Bucknell University, a group of
engineering faculty involved in an NSF funded initiative to
re-envision engineering education [3] has developed a
different model to teach problem solving based on several
arguments, described below:

How We Learn Skills

We all acquire skills in one way and one way only, though
practice and feedback. Students learn how to identify,
formulate and solve engineering problems by identifying,
formulating and solving engineering problems and then
getting feedback to learn from their experience. In a proper
educational environment, guidance as well as feedback
would be provided.

How does this relate to a traditional engineering
program with the heavy emphasis on textbook exercises? It
is clear that one of the critical flaws of relying heavily on
textbook problems is that they do not generally require
relevant problem solving skills. The textbook authors have
already identified and formulated the problem, which is now
an exercise that typically requires only application of
material from that chapter to solve. That is not "problem
solving", in any real sense and would not satisfy the
accreditation criterion on problem solving or prepare
students for industrial practice.

The Importance of Context

Even recognizing the limitations of traditional textbook
problems, some may argue that textbook problems build the
foundation for more relevant things. There's probably some
truth in that. However, textbook problems are artificial and
generally lack a relevant context, or at least one that is
genuinely relevant to the student. For that reason alone,
textbook exercises aren't ideal teaching tools. Perhaps more
importantly, there is evidence to suggest that students who
only solve textbook problems are not likely to be able to
apply the concepts to real problems [2]. In response to some
of these concerns, many of the authors have adopted the use
of problem-based learning in their courses and have
structured the classes so that relevant and realistic problems
drive most of the learning that occurs [7].

' Michael Prince, Chemical Engineering, Bucknell University, Lewisburg, PA. 17837 prince@bucknell.edu
? Brian Hoyt, Engineering Computing, Bucknell University, Lewisburg, PA. 17837 bhoyt@bucknell.edu

0-7803-7444-4/02/$17.00 © 2002 IEEE

November 6 -9, 2002, Boston, MA

32" ASEE/IEEE Frontiers in Education Conference
F2A-7



Principles of Good Instructional Design

One of the principles of good instructional design is to
develop student skills and responsibilities in a gradual way
so that students make the transition from novice to expert
problem solver easily over time. Students should be
introduced to relevant problem solving early in the
curriculum and gradually encouraged and trained to adopt
appropriate problem solving skills. This assumption about
instructional design underlies the tiered curriculum structure
described in this article and elsewhere [4].

DEVELOPING PROBLEM SOLVING SKILLS: A
STAGED CURRICULUM M ODEL

Based on these ideas, the authors have developed a tiered
curriculum model to develop problem solving skills
throughout the engineering curriculum and have begun to
implement the model at Bucknell University. The curricular
structure to promote problem-solving skills consists of core
courses phased throughout the curriculum that emphasize
problem solving at distinct levels. The courses are broken
down into introduction problem solving courses (P1),
intermediate problem solving courses (P2) and advanced
problem solving courses (P3). The type of problems utilized
in each course differentiates the courses. The problems
posed are qualitatively different, not simply more difficult,
thus requiring the students to engage different skill sets for
resolution. As a result of the distinct problem types used,
the courses develop different problem solving abilities.
Since these courses are staged throughout the 4-year
curriculum, students gradually receive practice and
instruction in a broad range of problem solving skills. Asa
result, students are gradually weaned away from textbook
problems and develop more practical problem solving
abilities.

Table 1 provides a definition and example of the type of
problem encountered at each level of problem solving in the
curriculum. The table also identifies where courses tend to
fall in the four- year curriculum and maps learning outcomes
associated with each course to Bloom's taxonomy. One can
see that there is a steady progression in the range of problem
solving skills required and in the level of Bloom's taxonomy
as students move through the levels of problem-solving in
the undergraduate curriculum.

While there is not a complete separation of problem
type used by course designation, a designated course will
emphasize problems of a certain level. Therefore, while an
intermediate problem-solving course may contain some Pl
and P3 type problems, the major emphasis will be on
vaguely defined problems requiring significant problem
definition on the part of the student. A more detailed
description of each level of problem solving is described
below.

0-7803-7444-4/02/$17.00 © 2002 IEEE
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INTRODUCTORY PROBLEM SOLVING COURSES

Introductory problem solving or P1 courses emphasize well-
defined problems having unique solutions and often unique
solution methodologies. These are the types of exercises
that are frequently found at the end of textbook chapters.
Many of these problems rely on "problem recognition” and
applying known algorithms. In introductory problem
solving courses, students must develop the knowledge base
to recognize the problem, choose an appropriate algorithm
and execute it. For example, students in a course on heat
transfer might be asked to calculate the heat flux through a
wall, given the wall materials, thickness and temperatures of
each surface.

This type of problem solving happens in many classes.
While routine, it develops skills that are prerequisites for
more advanced problems. In addition to providing the
technical knowledge base necessary for engineering practice,
introductory problem solving courses can be used to develop
a number of general problem-solving skills.  Specific
learning outcomes associated with introductory problem
solving courses include the ability to:

e recognize routine engineering problems and choose
appropriate solution algorithms.

e map out a solution plan.

e obtain relevant information necessary to solve the
problem.

e make and evaluate appropriate assumptions.

e  draw appropriate conclusions.

Some of these skills, especially the ability to recognize a
problem and plan a solution strategy, are elements of several
published problem-solving methodologies. Therefore,
instructors might think about introducing students to a
formal problem solving methodology in introductory or
subsequent courses emphasizing problem solving. We have
introduced students to the well-known methodology of
Donald Woods [6] because of its wide recognition and
acceptance in engineering education. The specific
methodology adopted is not central to the curriculum
structure proposed in this article, though Woods makes an
articulate argument for his approach and provides a good
overview of the literature for interested readers.

INTERMEDIATE PROBLEM SOLVING COURSES

Intermediate problem solving or P2 courses utilize problems
that are more realistic in that they are vaguely defined. The
significant difference from P1 courses is that intermediate
problem solving courses emphasize problem definition in a
way that is not present in introductory problem solving
courses. This is accomplished by phrasing the problem in
such a way that there is some ambiguity and uncertainty. A
common approach used in these courses is to embed the
problem in a scenario that one might encounter if one were a
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consultant and just hired by an organization to correct a
problem.

Using the example in Table 1, students in a heat transfer
course might be asked to assume the role of an engineering
consultant brought in to analyze why the heating system
does not maintain a comfortable room temperature. A
common reason might be that the system is not adequately
sized to handle the heat loss from the room, which students
can determine by examining the specifications of the heating
system and the relevant room characteristics. Students,
however, must examine the problem and do the required
analyses to determine the problem. Only then can they make
a rational recommendation to address the problem.

The use of ill-defined problems develops critical
problem solving skills that our students need. However, this
is not necessarily design, nor does it require a great deal of
creativity or synthesis. While having upped the ante, so to
speak, by requiring significant and practical problem solving
skills, the problems differ from those found in traditional
design courses in that no significant amount of real design is
necessary. However, there is a critical difference from P1
courses in that students must put the problem into a solvable
form. Only then can students apply appropriate algorithms
to complete any necessary calculations to solve the problem.

As with introductory problem solving courses, there are
specific learning outcomes associated with intermediate
problem solving courses that are independent of technical
content. The generic learning outcomes associated with
intermediate problem solving courses are:

e  Those from P1 courses, which are foundational.

e  The ability to define a problem.

o The ability to assess that the solution developed
adequately addresses the given problem.

ADVANCED PROBLEM SOLVING COURSES

Advanced problem solving or P3 courses emphasize
problems that require significant elements of creativity.
These might be the types of problems found in senior design
courses. Here, design is described as ill-defined problems
(poorly defined problem statements, goals or both) with
multiple solutions and solution methodologies possible. In

Session F2A

essence, the magnitude of the ambiguity changes from
intermediate courses. The problems become one of scale
and scope. The students are asked to start at the beginning
and to build something rather than fix something. If the
instructor is embedding the problem in the context of a
consulting problem, the student as consultant might be asked
to design a plant of some sort—which would be different
from the type of ill-defined problem encountered in an
intermediate problem-solving course. Advanced problems
allow for more creativity and for more errors.
The specific learning outcomes associated with
advanced problem solving courses include:
e  All of the skills developed in P1 and P2 courses.
e  Ability to generate creative solutions to address the real
problem.
e  Ability to evaluate and choose among multiple possible
solutions.

ASSESSMENT OF PROBLEM SOLVING

Assessment of results of the curriculum structure to develop
problem-solving skills is preliminary at this point. We are
still in the process of developing appropriate modules and
instructor materials to develop problem-solving skills. We
are also still in the process of fully integrating the staged
approach for problem solving into the curriculum. However,
we have systematically surveyed both faculty and students
involved in Project Catalyst on the effectiveness of the
courses for developing problem-solving skills.

Because the Chemical Engineering program has achieved
the highest level of curriculum integration at this point, the
survey results are shown from chemical engineering courses
in the sophomore, junior and senior years. Those results are
shown in Table 2. While survey data are only one measure
of the effectiveness in achieving. learning outcomes, there is
some evidence to suggest that survey data correlate
reasonably well with other objective measures. For
example, Pike [4] found that self-reported measures of
educational gains were as valid as objective measures to the
extent that the self-report measures reflected the content of
the learning outcomes under consideration.

TABLE 1.
STAGED LEVELS OF PROBLEM SOLVING

Problem Solving
into a solvable form before applying
algorithms.

Course Level Definition Example Bloom's Taxonomy

PI: Introductory Recognition and application of routine Calculate the heat flux through | Knowledge,

Problem Solving algorithms a wall of known composition | Comprehension, and
Application

P2: Intermediate Solution of poorly-defined problems Determine why a room's Analysis

requiring students to reformulate problem

heating system does not
maintain a comfortable
temperature

P3: Advanced
Problem Solving

Solution of open-ended, vaguely-defined
problems requiring significant creativity,
Comparing alternative design solutions.

Design a new heating system | Synthesis and Evaluation
for a room that meets size and

cost constraints.
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TABLE 2
Student and Faculty SURVEY DATA ON PROBLEM SOLVING

Questions for Spring of 2001 kL e
This course was effective in developing students' abilities to analyze and evaluate problems 6.61" 6.33
beyond the simple recall of facts. ) )

This course satisfactorily developed students' abilities to integrate course material to solve open- 6.45 5.67
ended problems. - :

The collaborative learing format of the course was more effective in developng problemsolving 6.59 6.67

skills than a traditional lecture based approach ) )

The collaborative learning format of the course was more effective in developing critical thinking 6.44 6.67

than a traditional lecture based approach i )
Questions for Fall of 2001 f{t:s(:)z?ltez gzzgl:zse
This course was cffective in requiring students to use knowledge gained previously from other 6.08" 6.29
courses in the curriculum. ) ’

This course was effective in developing students' abilities to solve problems that are vaguely 6.27 6.14
defined or that have more than one acceptable solution. ) )

This course was more effective than a lecture-based format* for requiring students to use 584 6.57
knowledge gained previously from other courses in the curriculum. - =

This course was more effective than a lecture-based format* for developing students' abilities to 6.02 7.00

solve problems that are vaguely defined or that have more than one acceptable solution. ) )

different levels.

disagree, 1-highly disagree.

majority of the time in class.

1. Student data taken from 3-targeted courses in the chemical engineering curriculum. Fluid Mechanis in the sophomore year, Unit
Operations laboratory in the junior year and Advanced Design in the senior year. Each course stressed elements of teamwork at

2. Student data taken from 4-targeted courses in the chemical engineering curriculum. Chemical Engineering Principles in the
sophomore year, Heat and Mass Transfer and Equilibrium St age Processes in the junior year, and Design in the senior year. Each
course stressed elements of teamwork at different levels.

T All responses on a 7-point scale: 7-highly agree, 6-moderately agree, 5-slightly agree, 4-neutral, 3-slightly disagree, 2-moderately

For purposes of this survey, a "lecture-based" format was defined to be one where the professor sets the agenda and lectures for the

The results show a high degree of consitency
between students and faculty and from course to course.
Both students and faculty moderately to strongly agree
that the targeted courses were effective for developing a
range of problem solving skills. In addition, both students
and faculty moderately to strongly agree that the targeted
courses were more effective for developing problem
solving courses than traditional courses

CONCLUSIONS

The Project Catalyst team has developed aconceptual
framework for progressively developing students’
problem solving skills across the curriculum. The
framework consists of three distinct levels of learning
outcomes. Work has begun on developing generic
curriculum modules that are not course or discipline
specific which faculty can use to promote student
attainment of the outcomes specified in each framework.
Preliminary assessment efforts indicate that both faculty
and students perceive that the course sequences in which
the problem solving framework was implemented
improved students’ problem solving skills and that
courses were more effective than traditional courses in
developing these skills.

0-7803-7444-4/02/$17.00 © 2002 IEEE
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"l.et me give you a math story problem." This sentence often strikes fear in many middle grades
students as well as some teachers. As international comparisons, national commissions, and

. state assessment results confirm, students have difficulty solving mathematical applications

. problems (Lester, 2007; U. S. Department of Education Institute of Educational Science, 2007;

¢ TIMMS, 2003; McREL, 2002; National Research Council, 2002; Illinois State Board of Education,
1997).

Improving students'problem-solving abilities is a major, if not the major, goal of middle grades
mathematics (Naticnal Council of Teachers of Mathematics, 2000; 1995; 1989). To address this
goal, the author, who is a university mathematics educator, and nine inner-city middle school
teachers developed a math/science action research project. This article describes our unique
approach to mathematical problem solving derived from research on reading and writing
pedagogy, specifically, research indicating that students who use graphic organizers to organize
their ideas improve their comprehension and communication skills (Goeden, 2002 ; National
Reading Panel, 2000).

Many teachers and students use graphic organizers to enhance the writing process in all subject
areas, including mathematics. Graphic organizers help students organize and then clarify their
thoughts, infer solutions to problems, and communicate their thinking strategies.

We designed a classroom action research project to study a problem-solving instructional
approach in which students used graphic organizers. Our goal was to improve student
achievement in three areas of our state's math assessment in open-response problems:
mathematics knowledge, strategic knowledge, and mathematical explanation. In this article, we
discuss graphic organizers and their potential benefits for both students and teachers, we
describe the specific graphic organizer adaptations we created for mathematical problem
solving, and we discuss some of our research results of using the four corners and a diamond
graphic organizer,

Benefits of using graphic organizers in mathematics learning



A graphic organizer is an instructional tool students can use to organize and structure
information and concepts and to promote thinking about relationships between concepts.,
Furthermore, the spatial arrangement of a graphic organizer allows the student, and the
teacher, to identify missing information or absent connections in one's strategic thinking (Ellis,
2004).

Middle grades teachers already use many different types of graphic organizers in the writing
process. All share the common trait of depicting the process of thinking into a pictorial or
graphic format. This helps students reduce and organize information, concepts, and
relationships. When a student completes a graphic organizer, he or she does not have to process
as much specific, semantic information to understand the information or problem (Ellis, 2004).
Graphic organizers allow, and often require, the student to sort information and classify it as
essential or non-essential; structure information and concepts; identify relationships between
concepts; and organize communication about an issue or problem.

Consider the following middle grades math problem from a recent state assessment.

How many vertices (corners) are there in 1, 2, 3, 4, 5, 6 ... n squares when they are arranged in
the following way?

What did you first think when reading the problem? Did you first think of the meaning of the
term "vertices" or that this is a mathematical pattern problem? Did you first think of counting

¢ the corners or that this looks like an arrangement of tables? Did you first think to discuss in your
~ solution why you are not just adding four with every square? Did you first try to think of the
singular form of the word vertices?

Initial thinking is not a linear activity, especially in mathematical problem solving. Yet, the result
of problem solving—the written solution—often looks like a linear, step-by-step procedure. Good
problem solvers brainstorm different thoughts and ideas when first presented with a problem,
and these may or may not be useful. Problem solvers can use a graphic organizer to record
random information but not process it. A student can later reflect upon usefulness of the
information and ideas. If the information and ideas help the student make relationships between
concepts, then they are essential. A graphic organizer allows a student to quickly organize,
analyze, and synthesize one's knowledge, concepts, relationships, strategy, and communication.
It also gives every student a starting point for the problem-solving process.

Adapting a graphic organizer for mathematical problem solving

Figure 1 Four Corners and a diamond mathematics graphic organizer



What do you
already know?

Brainstorm ways to
solve this problem.

‘What doyou
nead to find?

Explanations you need

to include in your
extendad-responsawrite-up.
What did you fearn by doing
this problemt

Try it hera.

Figure 1 depicts the four corners and a diamond graphic organizer. This graphic organizer was
modified from the four squares writing graphic organizer described by Gould and Gould (1999).
. The four square writing method is a formulaic writing approach, originally designed to teach

' essay writing to children in a five paragraph, step-by-step approach. The graphic organizer
portion of the method specifically assists students with prewriting and organizing. We saw
beneficial problem-solving aspects in the graphic organizer portion of this writing method for
mathematics.

Our four corners and a diamond graphic organizer has five areas:

What do you need to find?

What do you already know?

Brainstorm possible ways to solve this problem.

Try your ways here.

What things do you need to include in your response? What mathematics did you learn
by working this problem?

SRR S

Actually, the form in Figure 1 does not have to be given to the students each time. Figure 2
shows how students, using a blank piece of paper, make the four corners and a diamond graphic
organizer template. The student folds the paper into fourths, first folding the paper horizontally
("hot dog style"), then vertically ("hamburger style"), and finally the inner corner is folded up.
When the paper is unfolded, the creases form the four corners and the "diamond" rhombus in
the middle. The teachers reported that students later (e.g., during state testing) often folded or
drew the five areas on their paper to begin problem solving.

Figure 2 Four Corners and a diamond folding template



So how does the use of the four corners and a diamond graphic organizer differ from the
traditional Polya's four-step mathematical problem-solving hierarchy? In terms of objectives, it
does not. Obviously, the four corners and a diamond graphic organizer is designed to help
students understand the problem, devise a plan, carry out the plan, and look back (Polya,

1944). However, by having the non-linear layout of the graphic organizer, the student is not
expected to do these "steps” in a hierarchical, procedural order that some students misapply. It
is the implementation process, how students form their response, that is the important aspect of
the four corners and a diamond graphic organizer (Zollman, 2006a).



The pictorial orientation allows students to record their ideas in whatever order they occur. If
students first think of the unit for their final answer, then this is recorded in the fifth, bottom-
right area. This idea (the unit), then, is not needed in the short-term memory because a
reminder is recorded. If students first think of a possible procedure for their answer, this is
recorded in the third, upper-right area. The four corners and a diamond graphic organizer
allows, and even encourages, students to use their problem-solving strategies in a non-
hierarchical order. A student can work in one area of the organizer and later work a different

| area. It also shows that completing a problem-solving response has several different, but
related, aspects.

Students do not begin writing a response until some information or ideas are in all five areas.
The four corners and a diamond graphic organizer especially encourages students to begin
working on a problem before they have an identified solution method. As in the four square
writing method, the students then organize and edit their thoughts by writing their solution in
the traditional linear response, using connecting phrases and adding details and relationships.
The steps for the open response write-up are as follows: (1) state the problem; (2) list the given
information; (3) explain methods for solving the problem; (4) identify mathematical work
procedures; and (5) specify the final answer and cenclusions,

The graphic portion of the organizer allows all students to fill in parts of the solution process. It
encourages all students to persevere—to "muck around” working on a problem. Further,

. teachers quickly can identify where students are confused when solving a problem by simply
examining the graphic organizer.

. The teacher should model praper use of the four corners and a diamond graphic organizer and
have students work in groups when introducing this tool. Working in groups allows students to
see that many problems can be worked in more than one way and that different people start in
different places when solving a problem. In their small-group discussions, students identify
relationships between the areas in the graphic organizer and among the various solutions.

Graphic organizers can benefit students when they take
standardized state mathematics assessments, specifically
open-response problem-solving items. Most states use a
scoring rubric for these types of items. In Illinois, for
example, the scoring rubric has three categories:
mathematical knowledge, strategic knowledge, and
explanation (Illinois State Board of Education, 2005).
Responses are scored on a four-point scale for each
category, with scores ranging from zero for "no attempt” to
four for “complete.” Typically, low-ability students do not attempt to show any work in one or
more response categories, while average-ability students often have disorganized responses.
Higher-ability students sometimes skip steps in their explanations. The four corners and a
diamond graphic organizer helps each type of student produce a more complete response in
each of the three categories and, thus, receive a higher score.

Impact of graphic organizers



Nine middle school teachers decided to use the open-response mathematics questions as the
focus of their action research on the effects of using graphic organizers. Teachers administered
pre- and post-tests with their students to see if using the four corners and a diamond graphic
organizer impacted their performance.

All teachers reported dramatic improvements in students' mathematics scores on open-response
items after implementing the four corners and a diamond graphic organizer. The percentage of
students (N=186) who scored at the "meets" or "exceeds" levels on each of the open-response
item categories on the pre-test was 4% for math knowledge, 19% for strategic knowledge, and
8% for explanation. After instructing students to use the graphic organizer in mathematical
problem solving, the percentage of students scoring "meets" or "exceeds"” on the post-test
improved to 75% for math knowledge, 68% for strategic knowledge, and 68% for explanation
(Zollman, 2006a; 2006b).

Each teacher self-collected and self-scored these data using the state’s scoring rubric. Overall
scores increased from a 27% average on the pre-test to a 70% average on the post-test. Data
collected, analyzed, and triangulated from three sources—the teachers, the action research pre-
and post-test data, and the students' work—suggests that the use of the graphic organizer in
mathematical problem solving may significantly help students coordinate their mathematical
ideas, methods, thinking, and writing. The graphic organizer helped students coordinate various
parts of mathematical problem solving: (a) What is the question? (b) What information is
known? (c) What strategies might be used? {d) Which operations, procedures, or algorithms of
the strategy need to be shown? (&) What explanations and reflections are needed to
communicate the methqq(s_) of solution? (Zoliman, 2006a; 2006b).

The teachers found the use of graphic organizers in
mathematical problem solving to be very efficient

and effective for all levels of students. The teachers saw

that their lower-ability students, who normally would not

attempted problems, had now written partial
Isolutions. The organizer appeared to help average-
ability  _ . ot e students organize thinking strategies and help high-
ability students improve their problem-solving
communication skills (Zollman, 2006b). Students now had an efficient and familiar method for

© writing and communicating their thinking in a logical argument,

have V’ ‘

Samples of students' work

The samples of student work in Figures 3 and 4 are from an open-response squares and vertices
problem before and after the use of graphic organizers in the classroom.



Figure 3 Samples 1 & 2 (Click on image of [“"—
Figure 3 to see larger PDF,) [ Sy

Sample 1 shows the work of a student who |
was presented the problem before | + l
becoming familiar with the four corners and | _ |

a diamond graphic organizer. Sample 2 i e

shows the same student's work later in the |l SR
semester, after learning how to problem | Ty e %
solve using the graphic organizer. The |_____ I .

student's strategy on the pre-test was to sueies ey ":‘“5;; &3 i
count the individual vertices In the picture, <o sas@hases i
then add these numbers. This work shows a ‘ ‘

misunderstanding of the problem, limited | — e
strategy, and no explanation. On the post-

test, this same student's work shows a complete understanding of the problem presented (10
squares) and a complete explanation of a correct strategy that will transfer to other problems,
however, it lacks a concluding algebraic formula to demonstrate mathematical knowledge. While
it is not a perfect response, understanding, organization, development, and reflection are all

| strongly represented on the graphic organizer.

Figure 4 Samples 3, 4 & 5 (Click on image
of Figure 4 to see larger PDF.) | . «

|
|
|
!
| The second student's pre-test (Sample 3) | N [| ;[[[rH:_fr '
shows the common incorrect strategy of { it ! _ "1 g
just counting the total vertices in the : 11 '
picture. It appears that the student then |
attempted to "add" the individual pictures |
in the student's own drawing to again count
the vertices. However, without any
explanation, the teacher cannot know what
strategy, if any, the student was
attempting. Again, this work shows a
misunderstanding of the problem, limited i
strategy, and no explanation. This student's
post-test (Sample 4) illustrates excellent
understanding, organization, development
and refiection of the problem presented (10 i : S
| squares). The graphic organizer shows the | 8% 572 ol T
student's complete, correct strategy, T e .
solution, and explanation of the problem,
For mathematical knowledge, the formula is well explained in words, not as an algebraic
expression. This would be acceptable on state assessments, as the problem did not specifically
ask for an algebraic expression,




Sample 5 is the post-test work of a higher-ability student. This student's work demonstrates a
full understanding of the problem, a correct solution, and a complete explanation. The drawings
also suggest that the student feels a sense of ownership of and satisfaction with the solution and
probably finished the problem with plenty of time to spare.

Caveats

We hoped the students in our action research study would improve their prablem solving with an
instructional intervention from pre-test to post-test; however, no single instructional method
directly affects learning. Rather, instruction is one of many factors that may influence learning.
Others include the curricutum, the student, the class, and the teacher. Nevertheless, the
teachers who conducted the action research described in this article believed the graphic
organizer was associated with many of the positive outcomes in their students'problem-solving
ability (Zollman, 2006b).

The crucial factor in the effectiveness of any instructional method is how it is implemented. If
four corners and a diamond graphic organizer is used as a linear, systematic procedure to teach
problem solving, it will succeed sporadically. In fact, any direct teaching about problem solving
is likely to have intermittent success. Giving students a chart of Polya's (1944) four steps in
problem solving or a graphic organizer sheet may help students learn the steps of problem
solving. However, students may remain uncertain about where to start a problem, confused by
essential versus non-essential information, or unaware how to communicate important steps and
reflections in their solutions. We found that graphic organizers aid students in all three of these
areas.

Allowing students to first use their own thinking~and then reflect, revise, and re-organize their
knowledge, strategies, and communication-helps them improve their problem-solving abilities.
Initially, teaching about problem solving as a hierarchy of procedural steps is neither efficient
nor effective. Our results confirm other studies that found teaching via problem solving is the
key instructional process (Lester, 2007).

Summary

As our work suggests, effective reading and writing strategies like graphic organizers may have
crossover effects in mathematics for students of all ability levels. We found that four corners and
a diamond, when properly used, was an extremely useful instructional method in the middle
grades mathematics classroom. Our instructional approach helped students construct content
knowledge and strategic knowledge and, we contend, it also improved their mathematical
communication skills. In addition, four corners and a diamond allowed teachers to quickly
identify the weaknesses and strengths of students' problem solving abilities. As teachers seek to
expand and improve students'mathematical knowledge to help them solve problems, they may
find that good teaching in reading and writing is good teaching in math.

|
| Extensions

The author shows how graphic organizers that are typically used to help students organize
their thoughts while writing in ELA can also be used to help them think through problem-




solving tasks in mathematics.

How can teachers use graphic organizers to actively engage students in thinking and problem-
solving activities in all areas of the curriculum?

' Author note

1 would like to thank the students and teachers of the East Aurora (IL) middle schools, and
| especially teacher Karen Lopez, for their assistance.

: Acknowledgement
This work was supported in part by the Illinois Mathematics and Science Partnerships
Program/ISBE/US Department of Education, funded by NCLB, Title II, Part B, US DOE.

References

Ellis, E. (2004). What's the big deal about graphic organizers? Retrieved July 7, 2003, from
- http://www.Graphic Organizers.com

Goeden, 1. (2002). Using comprehension frames (graphic organizers) to impact students’
. reading comprehension. Unpublished thesis. Black Hills State University.

| Gould, J., & Gould, E. (1999). Four square writing method for grades 1-3. Carthage, IL:
Teaching and Learning Company.

Illinois State Board of Education, (2005). Mathematics scoring rubric. Springfield, IL: Author.
" Tllinois State Board of Education. (1997). Illinois learning standards. Springfield, IL: Author.

Lester, F. (Ed.). (2007). Second handbook of research on mathematics teaching and learning.
| Greenwich, CT: Information Age.

Mid-continent Research for Education and Learning (McREL). (2002). ED thoughts: What we
know about mathematics teaching and learning. Aurora, CO: Author.

U.S. Department of Education Institute of Educational Sciences. (2007). The nation's report
card. Retrieved January 28, 2008, from http://nces.ed.gov/nationsreportcard

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

| National Council of Teachers of Mathematics. (1995). Assessment standards for school
| mathematics. Reston, VA: Author.

. National Council of Teachers of Mathematics. (2000). Principles and standards for school
mathematics. Reston, VA: Author,



National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of
the scientific research literature on reading and its implications for reading instruction,
Washington DC: U.S. Department of Health and Human Services.

National Research Council. (2002). Learning and understanding: Improving advanced study of
mathematics and science in U.S. high schools. Washington DC: National Academy Press.

Polya, G. (1944). How to solve it. Garden City, NY: Doubleday.

Trends in International Mathematics and Science Study (TIMSS). (2003). Trends in international
mathematics and science study. Washington, DC: International Association for the Evaluation of
Educational Achievement.

Zollman, A. (20066a, April). Four-corners is better than Four-squares: Assessment connection for
solving mathematics story problems. Presented at the Annual Conference of the National Council
of Teachers of Mathematics, St. Louis, MO.

. Zollman, A. (2006b, October). Write is right: Improving students' problem solving using graphic
organizers. Presented at the 105th Annual Convention of the School Science and Mathematics
Association, Missoula, MT.

Alan Zollman is an associate professor of mathematics education in the department of
mathematical sciences at Northern Illinois University, DeKalb. E-mail: zollman@math.niu.edu

Copyright © 2009 by National Middie School Asscciation



Habits of an Effective Problem SO;ZYJ\ dﬁ/ jf: 4

the - %
Physic \
Classroom
The Calculator Pad

Problem Sets

Habits of an Effective
Problem Solver

Note to Students

Note to Instructors
Physics Tutorial
Minds on Physics
Multimedia Studios
Shockwave Studios
The Review Session
Physics Help
Curriculum Corner
The Laboratory

http://www.physicsclassroom.com/calcpad/habits.cfm

Page 1 of 2

home - about - terms - credits - feedback

» The Physics Classroom » The Calculalor Pad » Habits of an Effective Problem Solver

Habits of an Effective Problem Solver

One of the instructional goals of the Audio Help files is to assist students In becoming better and more confident problem-
solvers, If all students who are good problem-solvers could be observed dolng problems, then one would not necessarily
observe that they use the same approaches to solving problems. Most good problem-solvers have unlque little practices which
make them different from other good problem-solvers. Nonetheless, there are several habits which they all share in common.
While a good problem-solver may not religiously adhere to these habitual practices, they become more rellant upon them as the
problems become more difficult.

The list below describes some of the habits which good probiem-solvers share in common. The list is NOT an exhaustlve list; it
simply includes some commonly observed habits which good problem-soivers practice. Anyone can be a good problem-solver;
because of personallty and learning style differences, some will certainly be better than others. Nonetheless, anyone who puts
effort into disclplining themselves to be successful at solving problems can learn how to be proficlent at the task. A student who
devotes some time and attention to the list below and makes an effort to personalize it into their own approach to problems will
improve thelr problem-solving abllity. The use of these Audio Help files and the problem-solving practices which they promote
will not only asslst you In completing your problem sets but wilt also make you a better and more confident problem-solver.

Reading and Visualizing

All good problem-solvers will read a problem carefully and make an effort to visualize the physical situatlon. Physics problems
begin as word problems and terminate as mathematical exercises. Before the mathematics portlon of a problem begins, a
student must translate the written information into mathematical variables. Many errors (and perhaps even most) can be traced
back to this translation process. These errors are usually the result of a failure to visualize the physical situation described in the
verbal statement of the problem or of a failure in missing some strateglc information during the reading process. A good
problem-solver will often construct a dlagram of some form to assist In this critical visualization task. The actual diagram will
depend upon the topic which the problem pertains to. If the topic pertains to forces, a force diagram might be drawn. If the
problem pertalns to mirrors, a ray diagram or object-image diagram may be drawn. And If the problem pertains to vector
addition, a vector addition diagram may be drawn. But regardless of the topic, a good problem-solver typically begins the
translation of the written words into mathematical variables by an Informative sketch or diagram which depicts the situation.

Organization of Known and Unknown Information

As mentioned earlier, physics problems begin as word problems and terminate as mathematlcal exercises. During the
algebraic/mathematical part of the problem, the student must make substitution of known numerical information Into a
mathematical formula (and hopefully into the correct formula ). The mathematical formula is written in the form of symbols
which represent some physical quantity such as focal length, distance, acceleration or force. Before performing such
substitutions, the student must first equate the numerical information contalned in the verbal statement with the appropriate
physical quantity. It is the habit of a good problem-solver to carefully read the verbal statement and to combine the attention to
units (meters, kilograms, Joules, etc.) with their understanding of the meaning of physical quantities in order to accurately
extract the numerical Information and equate it with the appropriate symbol. Furthermore, good problem-solvers will conduct
this task by writing down the quantitative information with its unit and symbol in an organized fashion, often recording the
values on their diagram. This task will also include observing strateglc and meaningful phrases such as "a magnified and virtual
jmage", "a diverging lens", "starting from rest"”, "with a constant velocity”, and "in the absence of air resistance." While such
phrases do not explicitly provide numerlcal information, they do go a long way towards offering Information which implies a
particular solution strategy. In addition to Identifying the known Informatlon, good problem-solvers also practice the habit of
identifying the quantity to be solved for, recording it in terms of its appropriate symbol.

Plotting a Strategy for Sciving for the Unknown

Once the physical situation has been visualized and diagrammed and the numerical information has been extracted from the
verbal statement, the strategy plotting stage begins. During this stage of a problem, the student ponders the question: "How
can I use the known information - both expliclt and Implied - to determine the unknown quantity?" More than any other stage
during the problem solution, it Is during this stage that a student must think critically and apply their physics knowledge.

Difficult problems in physics (the kind which fikely draw students to these audlo help files) are multistep problems. The path
from known Information to the unknown quantity Is often not immediately obvious. The problem becomes like a jigsaw puzzle;
the assembly of all the pleces into the whole can only occur after careful inspection, thought, analysis, and perhaps some wrong
turns. In such cases, the time taken to plot out a strategy will pay huge dividends, preventing the loss of several frustrating
minutes of impulsive attempts at solving the problem. Good problem solvers use their background knowledge of physics and
physics formulae to think about how the known information Is related to each other and how it is related to the final unknown
quantity. They know through practice and through observation of other expert problem-solvers (such as their teacher) that
there are likely some Intermediate unknown quantitles which wlll have to be caiculated before finding the final unknown
quantity. By comparing the known information (which they have previously written down In an organized manner) to known
mathematical formulae, they are able to determine the intermediate quantitles which will allow them to subsequently determine
the final quantity. They record their thoughts as they think through possible steps for solving the problem; they often sketch a
schematic plan that depicts how to put the individual pleces together to solve the problem as a whole.

Often times, difficuities arlsing in the strategy plotting phase of a problem solution is the result of the lack of knowledge about
the topic. A good problem-solver understands that If they know very little about the topic, there Is no sense In attempting the
problem. Rather than waste valuable time trying, they spend their time learning about the topic, looking for relevant
mathematical formulae and studying pertinent concepts and princlples. Good problem-solvers are resourceful enough to know
where to look to find the formulae and other information which they need to know to solve the problem., They may look in thetr
notes from class, in thelr Instructlonal packets, in their textbooks or at online resources. Once a good problem-solver has filled
thelr minds with Information, they return to the problem to apply thelr new physics knowledge, asking once more "How can I

3/21/2011



Habits of an Effective Problem Solver Page 2 of 2

use the known information - both explicit and implied - to determine the unknown guantity?"

Even with suitable understanding of the physics behind a problem, a student can still get stuck and become in need of help.
Good problem-solvers are not typlcally caught off guard by such sticking points; they understand them to be natural to any
strategy plotting process. In such instances, good problem-solvers will often take the time to look at previously done problems
which are similar or identical to the one that they are trying to solve. They will compare the current problem to previous ones in
terms of known and unknown quantlties and observe the solution process to these simllar problems, pondering if a similar
strategy could be used. They may look at previous problems which they have done, sample problems from the textbook or from
online resources, or problems done in class. Because they have taken careful notes from ctass and organized their own solutions
to problems, good problem-solvers benefit tremendously from such comparisons. Often times, the current problem can use the
same solution as a previous one. Often times, the mere practice of looking through previous solutions triggers a thought about
how one can proceed with the current solution. Considerable learning occurs during this comparison process which allows a
good problem-solver to not only solve the current problem but also internallze the mathematical relationships between
quantities In physlcs. This effort makes good problem-solvers into even better problem-solvers, confident to approach any
problem that subsequently arises.

Identification of Appropriate Formula(e)

Once a strategy has been plotted for solving a problem, a good problem-solver will list appropriate mathematical formulae on
thelr paper. They may take the time to rearrange the formulae such that the unknown quantity appears by itself on the left side
of the equation. They wlli take the time to inspect the units In which the glven informatlon was stated and make converslons to
standard metric units if necessary. The process of Identifylng formula is simply the natural outcome of an effective strategy-
plotting phase.

Algebraic Manipulations and Operations

Finally the mathematics begins, but only after the all-important thinking and physics has occurred. In the final step of the
solutlon process, known information is substituted into the Identifled formulae in order to solve for the unknown quantity.
Following the carefully plotted strategy, the good problem-solver takes the time to manipulate the equations and solve for the
unknown. They record strateglc algebra steps on paper in the event that thelr answer is wrong. If wrong, they can quickly
inspect their algebra to determine if the error occurred during the mathematical phase of the problem or during the
planning/thought/physics stage of the problem.

It should be observed in the above description of the habits of a good problem-solver that the majority of work on a problem is
done prior to the actual mathematical operations are performed. Physics problems are more than exercises in mathematical
manipulation of numerical data. Physics problems require careful reading, good visualizatlon skllls, some background physics
knowledge, analytical thought and Inspectlon and a lot of strategy-plotting.
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Promoting Problem-Solving Skills in Elementary
Mathematics

Problem solving is an essential, if sometimes neglected, skill that demands
attention from the earliest grades.

Problem solving is an essential, if sometimes neglected, skill that demands
attention from the earliest grades. Students must learn to question and apply
mathematical concepts to problem-solving situations on a regular basis. To
support students in this goal, teachers need to

« create a classroom environment that embraces discourse

« bridge the gap between students’ ordinary language and the formal
language of mathematics

« focus on teaching strategies and conceptual understanding

Promote Discourse

Essential techniques for promoting discourse include modeling and think-alouds.
Through the use of think-alouds, teachers model each stage of the problem-
solving process, which can be best understood as following four steps:

1. understanding the question

2. selecting a strategy

3. applying the strategy

4. checking your answer

It is essential to talk through each step of the process. While it is easy to forget to
verbalize some of your thinking, keep in mind that students may have little
context to understand why a step is taken. Keep your language simple, but be
sure your think-aloud is thorough. Use visuals and manipulatives to demonstrate
processes when applicable,

The following activities can be used to support this process.



Problem of the Day Give students a problem daily. Instead of solving
the problem, break down the task. This makes it easier to model all
steps in the problem-solving process. Students can
« tell what the question is asking them to do
« underline key words in the question that indicate the
mathematical operation to be performed
« delete extraneous information
« identify the parts in the question
« find the best problem-solving strategy and explain why it is the
best
» describe two different ways a problem could have been solved
« have students develop questions from graphic information
» share student-generated questions
« ask other students to solve the problem and justify their
answers
Sharing Solutions Choose two to four students who have chosen
alternate paths to a problem to share their work. Or, chose one student
to share his or her work, and then ask if anyone solved the problem in
a different way.
Summarizing and Paraphrasing As each student shares his or her
solution, teachers should summarize or paraphrase. This allows the
teacher to distill, clarify, and illuminate ideas that students have
presented, as well as to link everyday language and mathematical
terms to the process.

Focus on Language

Many teachers use word walls to help students communicate their thinking and to
understand and use mathematical language. The word wall should be composed
of three types of language:

Symbolic: This refers to mathematical notation, such as +, -, =, %.
Content-specific: These are technical words associated with abstract
mathematical concepts and skills, such as sum, addend, product,
denominator.

Academic: These terms includes test and discourse language, such
as determine, simplify, predict, as well as words students use to
describe a concept or activity, such as add, take away.



The following activities can be used to encourage students to use mathematical
language and to support their understanding of the three different types.

¢ Word Sort Make or brainstorm a list of words, associated with one or
two related concepts, i.e. addition and subtraction. Write these terms
on cards and together with students categorize them. Numerous sorts
could be done, i.e. by concept (subtraction/addition); by similar
properties, by ordinary language and mathematic language (take
away/subtraction). This activity could also be done independently at a
math center.

¢ Guess My Word Game Play “guess my word.” Give students a clue
and have them guess the word (i.e. you use this word when you
separate sets). This activity could be adapted for independent math
center work. To adapt it for independent learning, make a list of
sentence clues and have students work individually or with a partner to
try to find the correct word wall term.

¢ In Your Own Words Give students a number of terms from the word
wall and have them write a definition, or explain the words meaning in
their own words. Research indicates that when students use their own
language to define words, they are more likely to retain them.

¢ Write a Word Problem Have the students write problems using the
appropriate terminology. Problems can be given to other students to
be solved.

Use Whole Group and Small Group Teaching Strategies

Many teachers use a mix of small and whole group instruction, as well as
heterogeneous and homogenous groupings to promote strategic thinking.
Consider incorporating the following strategies and activities to encourage
problem-solving skills.

Whole Group Learning
The most common problem-solving strategies should be modeled initially for the

whole group. As strategies are taught or discussed, make a list and keep it on a
chart that can be easily referred to. A list could include:



« acting it out
¢ drawing a picture
making a table
looking for a pattern
making a list
making a model
breaking the problem down into smaller parts
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Then students share their solutions ask other students to identify what strategy
they used.

Small Group and Independent Strategies

¢ Use heterogeneous groups. For cooperative work, pair weaker students
with stronger students for selected activities. Research has shown that
this grouping benefits both partners, not just the weaker partner. Stronger
students solidify their understandings as they verbalize their
understanding and try to communicate it to their peer.

+ Offer options to homogenous groups. Students benefit from being in
same- or similar-ability groups as well. Provide options for skill practice
that include leveled activities or problems. Students can self-select an
activity appropriate to their level. Consider creating a color-coded “math
menu” of leveled activities focused on the skills and concepts introduced
with direct instruction in the whole group.

¢ Include teacher-led and student-led groups. A three-day process that
rotates all students at least once through the teacher-led group and
provides small group practice could include the following:

Day 1: Assign students to work independently from the math menu. The
teacher will work with a target group and after instruction will assign
follow-up work.

Day 2: The teacher works with a new target group—one group of
students works at the ‘teacher follow up center’ and the third group works
from the math menu.

Day 3: The teacher works with the last group of students and a three
day/3 group rotating system has been established.



Read more about it...
Math Forum

http://mathforum.org/ hosts six different problems of the week projects featuring
non-routine word problems for elementary school students. The site comes
complete with student mentors who reply to students. This site could be used as
a center also.




